Harmonic measures versus quasiconformal measures for hyperbolic groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasiconformal Distortion of Hausdorff Measures

In this paper we prove that if φ : C → C is a K-quasiconformal map, 0 < t < 2, and E ⊂ C is a compact set contained in a ball B, then H(E) diam(B) ≤ C(K) ( H ′ (φ(E)) diam(φ(B))t′ ) t tK

متن کامل

Harmonic Superspace, Minimal Unitary Representations and Quasiconformal Groups

We show that there is a remarkable connection between the harmonic superspace (HSS) formulation of N = 2, d = 4 supersymmetric quaternionic Kähler sigma models that couple to N = 2 supergravity and the minimal unitary representations of their isometry groups. In particular, for N = 2 sigma models with quaternionic symmetric target spaces of the form G/H × SU(2) we establish a one-to-one mapping...

متن کامل

Physical Measures for Partially Hyperbolic Surface Endomorphisms

We consider dynamical systems generated by partially hyperbolic surface endomorphisms of class Cr with one-dimensional strongly unstable subbundle. As the main result, we prove that such a dynamical system generically admits finitely many ergodic physical measures whose union of basins of attraction has total Lebesgue measure, provided that r ≥ 19.

متن کامل

Scaling Properties of Hyperbolic Measures

In this article we consider a class of maps which includes C 1+ diieomorphisms as well as invertible and nonivertible maps with piecewise smooth singularities. We prove a general scaling result for any hyperbolic measure which is invariant for a map from our class. The existence of the pointwise dimension and the Brin-Katok local entropy formula are special cases of our scaling result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales scientifiques de l'École normale supérieure

سال: 2011

ISSN: 0012-9593,1873-2151

DOI: 10.24033/asens.2153